JAutoDiff

nilgiri.math
Interface Group<X>

Type Parameters:
X - A set forms a group.
All Known Subinterfaces:
CommutativeGroup<X>, CommutativeRing<X>, ComplexNumber<R,X>, DifferentialMatrixFunction<X>, DifferentialVectorFunction<X>, Field<X>, RealNumber<X>, Ring<X>
All Known Implementing Classes:
AbstractBinaryFunction, AbstractUnaryFunction, Constant, DifferentialFunction, DoubleComplex, DoubleReal, Inverse, Negative, One, PolynomialTerm, Product, Sum, Variable, Zero

public interface Group<X>

A class X implements the Group<X> interface indicates that X has properties of being a group.


Method Summary
 X minus(X i_v)
          Returns an object of X whose value is (this - i_v).
 X mul(long i_n)
          Returns an object of X whose value is the summation (sum_{1}^{i_n}(this)).
 X negate()
          Returns an object of X whose value is (- this).
 X plus(X i_v)
          Returns an object of X whose value is (this + i_v).
 

Method Detail

negate

X negate()
Returns an object of X whose value is (- this).

Returns:
- this

plus

X plus(X i_v)
Returns an object of X whose value is (this + i_v).

Parameters:
i_v -
Returns:
this + i_v

minus

X minus(X i_v)
Returns an object of X whose value is (this - i_v).

Parameters:
i_v -
Returns:
this - i_v

mul

X mul(long i_n)
Returns an object of X whose value is the summation (sum_{1}^{i_n}(this)). Group<X&rt guarantees the results for natural numbers only.

Parameters:
i_n - a natural number
Returns:
sum_{1}^{i_n}(this)

JAutoDiff

JAutoDiff website